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SUMMARY 

We present an iteration procedure to locate the minimum 

of a continuously differentiable strictly convex function over 

the unbounded  simplex in Euclidean n-space,   and we prove  that 

the procedure converges to the unique minimum.    This procedure 

is constructed  to  facilitate its adaptation  to machine program- 

ming.    Applications of this procedure  to maximum likelihood 

estimation in  certain non-parametric cases are mentioned. 
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1.     INTRODUCTION 

Recently,   there have occurred some applications of the 

problem of minimizing a convex function,  say    f,    defined on 

Euclidean n-space    R ,    over the unbounded simplex 

S -  {(x.,...,x )  e R    :  x    < x0  <   • ••  < x }. i n n        i —   z —        —   n 

Special cases of this problem arise in the maximum likelihood 

estimation of parameters subject to known constraints.  These 

problems have been treated by Brunk et al in a series of 

papers [1], [2], [3]. They also arise in the maximum likelihood 

estimation in certain non-parametric situations as treated by 

Marshall and Proschan [5]. 

The method used in the cases cited requires that the 

function f be of the form 

n 
(1.1) f(x1,...,xn) - £ f^x^ 

where each    f       is convex over    R-. 

Let    u(j-r,  j+s)    be the value of    x   which minimizes 

j+p-l 

j       f.(x).     Then the minimizing point of    f    over the 

i-j-r+1 

■ 
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simplex S,  call it  (a.,...,a ),  is known to be given by 

max   min u(j-r,j+s) 
aj ' r >_ 1 s >_ 1 

This straightforward method works for non-parametric estimates 

in the case of densities with increasing failure rates. 

The general problem of minimizing a function over compact subsets 

of R  in the case the function is strictly convex in each coordinate 
n f 

and continuously differentiable and assumes the minimum in the interior 

has been treated by Warga [6].  He proposes the use of an iteration 

procedure of minimizing successively one coordinate after another beginning 

at any point. 

If f  is convex and continuously differentiable in R  and is to be 

minimized over the bounded simplex 

Sw ■ ((x,,...,x ) e R  : -M < x. < ••• < x  < M} 
n     i     n    n     — i—    — n — 

for some  M > 0,  then one may utilize the Warga iteration procedure to 

find the minimum of f over the n-fold Cartesian product of the interval 

(-M,M].  Let it be (a.,...^ ).  Then knowing the result (proved in [3]) 

that if a. > a...,  then the point  (a,,...,a ) which minimizes f over 
j   j+1 1     n 

S  must have a. ■ a... . We can, in at most n applications of the 
n j   j+1 vv 

Warga procedure, obtain the minimum over S... 
M 

The problem which arises in the determination ox the nonparametric 

maximum likeliliood estlma^ in the case the density has 
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a convex failure rate Is that of minimising a convex function 

(which does not have property (1.1)) over the unbounded simplex. 

The belief which prompted this effort was that something could 

be found which was alternate to the method above for some M 

sufficiently large. 

2.  THE ITERATION OPERATOR 

Let f be a function which Is to be minimized over the 

convex set S. We assume that f satisfies the following: 

1° For any a.ßeS and te(0,l) 

f(ta + (l-t)ß) < tf(a) + (l-t)f(ß). 

and letting 6  be the vector which is zero in every 

coordinate except the 1  which is unity, we have 

f(a + t6 ) - f(a) 
D f(a) - 11m  3  , 
J     t -♦• 0       t 

the partial derivative with respect to the J  coordinate, 

exists and is continuous for J ■ lt...tn. 

2° If {a }  is a sequence of points in S such that at 

least one coordinate, say the j  , has the property that 

lim sup |a. | ■ <»  then  lim sup f(a ) ■ «>. 
i -> a>     J £ -»■ ao 

Now from 1° it follows that f is a strictly convex continuously 

differentlable function and from 2° that a minimizing value of f over 
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S exists which by the strict convexity must be unique. 

For any vector a e S and any two Integers j,k such that 

j ^ 1, k ^ n and k ^ j we make the notatlonal convention 

for x a real number 

(2.1)        (x:v,k,a) - a + x(6 +•••+ 6k) 

where 6J ■ (6.., 6..,...,6 .) with 6..  the Kronecker delta. 
1    il  Zl     ni        ji 

Now If we use A as tue difference operator Aa «a. - o. ,, 

then -Aa <^ x 1 Aa, .  Implies that  (x:j,k,a) e S.  Let the value 

of x e l-Aa , Aa. . ]  which minimizes f(x:j,k,a) be denoted by 

P(jfk,a). 

LEMMA 1: For given integers such that j ^. 1.  k <^ n, 

k ^ j we have 

p(j>k,a)  is a continuous function of a on S. 

PROOF: Let j,k as required and a £ S be fixed arbitrarily. 

To show continuity, let  {a } be a sequence of points in S such 

that a -► a e S.  If p * p(j,k,a ) does not converge to 

p(jiksa), then by compactness there is a subsequent such that 

Pn "*" P0 ^ P(J.M) 

CASE I  -Aa. < Aa. j, .  Take x e (-Aa. »Aa. ^J .  Then for that 
j    k+1 j  k+1 

x there is an N sufficiently large that 
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x e ^[-^•'vj 
and then for i > N, we have 

n n 
tip^  :j,k.a x) i f(x:j,k,a 1). 

Now letting 1 ->■ «>, we have by continuity of f  that 

f(p0:j,k,ot) <_ f(x:j,k,a). 

This Inequality holds for arbitrary x e (-Aa.,Aa. .,) and by 

continuity of f must hold for all x in the closed interval. 

Hence, by strict convexity, it must follow that p. is the 

minimizing value and by definition p. » p(j,k,a) which is a 

contradiction. 

CASE II -Aa. ■ Aa, ...  Since Aa. > 0,  we roust have 
J    k+1 1 - 

Aa. ■ Aa, . ■ 0 and since a -► a it must follow that 

|Aa j + Ua£+1| -► 0 as n -»> ». But -Aa" 1 p 1 Aak+l and 

hence p -► 0 « p(j ,k,a). This completes the proof, 
n 

We now define the transformations 

(2.2)  AJk(a) - a + p(j,k,a)(6 +•••+ 6k)  for 1 1 j i k < n. 

Following immediately from Lemma 1 we make the obvious 

REMARK:  For each j,k as prescribed, the transformation A .  is 

a continuous map from S into S. 
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in turn, we set 

A. ■ A  ••• A.. •• • A--A.. 
1   nn     jj     22 11 

(2.3)    Ar " An+l-r,n '" A2,r+lAlr 

A - A, 
n   In 

where juxtaposition indicates composition of the transformations. 

Finally, we set 

(2.0     B » A ••• A^A.. 

Since the composition of continuous functions is continuous, 

we have 

THEOREM 1; The transformation B is a continuous map of 

S into itself. 

We now prove 

LEMMA 2:  If A  (a) ^ a,  then f(A  (a)) < f(a). 

PROOF:  By definition 

f(A (a)) <_ f(a + x6 +...+x6k) for all x c [-Aa ,Aa .] 

and by strict convexity we obtain equality iff x ■ p(j,k,ot). 

Since always Oe [-Act ,Aa. .]  for a e S we have  f(A.. (a)) <_ f(a) 

with equality iff p(j,k,a) - 0.  Clearly then p(j,k,a) »* 0 
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Implies f (A . (ot)) < f(a) and by equation 2.3 it follows that 

A., (a) +  a iff p(j,k,a) / o.  This completes the proof. 
J * 

3.  PROOF OF CONVERGENCE 

Definition: A point a e S is a fixed point  of B iff 

B(a) « a. 

One checks easily that the property of the A. 's expressed in 

Lemma 2 is preserved under composition. Thus, we have 

THEOREM 2:  B is a transformation defined from S into s 

such that if a is not fixed, then f(Ba)  <  f(a). 

There follows immediately 

THEOREM 3:  If u is the unique minimum of f over S, 

then u is a fixed point of B. 

PROOF: Otherwise, by Theorem 2 B(p) +  u which would 

contradict the fact that  u was the minimum. 

We now derive some properties of this minimum which shall be 

needed subsequently.  We define 

(3.1)   3f(a:ß-a) - lim -^[f(a + tß-ta) - f(a)] 

t +0 

and as we know we have 

n 

(3.2) - £ ^-W(a) 

In the above, we have followed the notation of [4]. 
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LEMMA 3:  Suppose Che minimum u of f  Is such Chat 

^j-i < ^j \ < Vi for J ' k 

then it follows Chac for j 1 r 1 k 

(3.4.1)   3f(u:2 «i) - £ V^ -0, 

(3.4.2)   9f(u:^ Sj) 

j 

and 

IT Dif(ll) 1 0 

j 

(3.4.3)   Zi(u:jr   &P 

i 

2 ^^(y) - 0 
J 

PROOF:  If Y is any poinC in S,  Chen 

n 
(3.5)    afdKY-u) - ^ (Y1"U1)D1f(u) 1 0, 

oCherwise u    would noC be Che minimum since Chere would exisC a 

C > 0 such Chat 

~{f[u +  t(Y-p)] - f(uN'  0 

which would be a contradiction to    u    being the minimum.    Now take 

Uj-x i - j...-,r 

1    otherwise. 
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For some x > 0 such that y c  S    it  follows 

n r 
^(Y, -y.)D.f(y) - -x3f(p:T; 6 ) >_ 0. 
1 J 

This proves (3.4.2). The other case is done similarly. The 

proof of (3.4.3) follows immediately as a corollary since we 

must have the l.h.s. both  >^ 0 and ^_ 0. 

We can now state the crucial 

THEOREM 4:  If a  is not the minimum of  f over S,  then 

is not a  fixed point of B. 

By (3.3) we have 

r 

(3.6) 9f(a:u-a) " ^ ^j " VV (a) < 0- 

j-l 

If we consider the intervals of indices across which a  is 

constant, say, 

1 - £
0 1 ! < V ^ £i < £2>...,£N <_! < Vl ' n + 1 

we may rewrite (3.6) as 

N   -l+fi+1 

(3.7) 9f(a:M-a) » }]     }]      ^i~al  )Dif<a> < 0- 
i-1  j-^       i 

Since a is a fixed point of B we must have over each interval 

in which a  is constant, 

■ 
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(3.7.1)       3f(a:6 +'"+6 .    ) - 0 j - 0,...,m 
Rj     "^^J+l 

otherwise a would not be a fixed point of A   . . 

Moreover, for every j ■ 0,...,m, we must have for each 

I     < k < il 
j -     j+1 

(3.7.2) 3f(a:6 +..-+6 ) <_ 0 

J 

(3.7.3) 3f(a:6 +...+6      ) >_ 0 
"j+1 

otherwise, a would not be fixed for the appropriate A i/s. 
j »K 

Since the sum in (3.7) is negative, it follows that at least 

one of the summands must be negative.  Suppose without loss of 

generality that it is the first.  If we also consider the 

subintervals of  ^ 1. J < ^ across which u.  is constant, 

say for some N > 1, 

^ -^ < j < k2>  k2lj < k3.....knlj < k^- l2. 

We have from (3.7) by using (3.2) that 

m 

(3.7.A)   V* (u. -a. )3f(a:6. +-..+6      ) < 0. 
Tlf    ki h    ki   ■i ki+l 
i*0 

If u  is constant across I.   <_ i  L i"}     (i-e« m ■ 1 in 

(3.7.4)), then we have a contradiction with (3.7.1). Thus, we 
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assume m > 1.  Because u.   Is an increasing function of 1 
kl 

It must cross a   at most once.  Thus, we can write (3.7.4) 
1 

as 
m 

Vi-l   i 8+1 

(3.7.5) 0 >{ } ,   +    >  ](uu  -afl )3f(cx:6l, +'' •+<5_1+k  ). Z^ j^k^i^"—'^./    --i+k, 

On the right-hand side of (3.7.5) we label the first sum I and 

the second II where 

(3.7.6)    u,     1 a    for  1 » lt...,s 
kl     1 

u,     > a    for  i ■ s+l,...,ni 
Kl    ^1 

and perhaps one of the summations is vacuous. 

Consider the first term of I keeping (3.7.2) and (3.7.6) In 

mind.  Now 

(\-\>3f(a:\+---+6-i+k2
>i0- 

Since u.   is an increasing function of 1,  we have also 
ki 

0 <- (v\)af(a: V,,,+6-1+k2) 1 (vajli)9f(a:V,"+6-1+k2) 

By combining the terms    1 ■ 1,2,    we have 

I 1 >     (M.   -a    )3f(a:6    +'* •+<5.1+k       ) 
K2       1 1 i+1 

+ VV^^V"^-1^ 

.. 
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Repeating the argument s timis  we see that eventually 

we show 

IM. -a )3f(o,:S +...«     ^O. 
si      1        s+1 

A similar argument holds for showing  II ^ 0 and thus we 

have a contradiction to (3.7.5). 

We now have 

THEOREM 5:    For any a t  S    the sequence  {Bn(a)} 

converges to a fixed point of  f. 

PROOF:  Let a" » Bn(ci)  for n • 1,2,... then the 

sequence  {a }  has a convergent subsequence since it is from 

the set  {ß E S:f(ß) <_  f(a)} which is closed and bounded by 

virtue of 2° and being a subset of Euclidean n-space is compact. 

Set a ■ f(a ).  The sequence  {a }  is a decreasing sequence 

of real numbers bounded below and therefore converges  to a , 

say.  Clearly all limit points of  {a }  have the same f value, 

namely a . 

nk 
Let  a  ■*■ Yi  say, then 

n.      n. 
b0 - f(Y) 1 fB(ct 

K) <_ f(a K) 

and letting k ->■ ^ we have 
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^jEi^)  - f(Y). 

But by Theorem 1,  B  is continuous and by assumption  f  Is 

also thus we have 

lim fB(a K) - fB(Y) 
k  -> 00 

and fB(Y) ■ f(Y) and  Y is a fixed point which is the unique 

minimum. 
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